An in vivo study on the use of local phaseolus shoots in food

Eda GÜNEŞ, Gülsüm Rabia ŞAHİN

Abstract

Legumes grown and consumed all over the world except for the polar regions are used in human nutrition as the main source of plant protein for thousands of years.Although the legumes are rich in minerals, dietary fiber and B vitamins. However, it is known that the activity of phenolic, bioactive compounds, ascorbic acid and antioxidants increases after germination and sprouting in bean seeds. It was aimed to determining nutritional usege of shoots obtained by germination of commercial (Uzbekistan, Mersin) and regional (Malatya) bean varieties (fresh and uncooked). In this direction oxidation quantity and antioxidant activity are defined providing that Drosophila melanogaster as model organism is fed on bean shooted during the larval phase. Despite the fact that larval malondialdehit (MDA) quantities seem similar as statistical after nutrition, Glutatyon-S-Trasferoz (GST) activity of larvae that are fed on regional beans is defined higher. Either this result is originated from storage and hiding condition which commercial products getting rich according to vitamin or gene source of the regional bean is thought. Findings obtained; even if bean sprouts show that they can be used as an antioxidant source in nutrition, they are needed extensive studies on safely usage in terms of creatures.

Keywords

Mung bean, Sprouted, Drosophila, Nutrition, Antioxidant.

Full Text:

PDF

References

Ademiluyi A.O., Oboh G., Aragbaiye F.P. 2015. Antioxidant properties and in vitro a-amylase and a-glucosidase inhibitory properties of phenolics constituents from different varieties of Corchorus spp. Journal of Taibah University Medical Sciences, 10: 278-287.

Aguilera Y., Herrera T., Benítez V., Arribas S.M., De Pablo A.L.L., Esteban R.M., Martín-Cabrejas M.A. 2015. Estimation of scavengingcapacity of melatonin and other antioxidants: Contribution and evaluation in germinated seeds. Food Chemistry, 170: 203-211.

Ahad M.A., Nahar M.K., Amin M.R., Suh S.J., Kwon Y.J. 2016. Effect of weed extracts against pulse beetle, Callosobruchus chinensis L.(Coleoptera: Bruchidae) of Mung bean. Bangladesh Journal of Agricultural Research, 41(1): 75-84.

Amin M.R., Shahjahan M., El-Taj H.F., Iqbal T.M.T., Hossain M.A. 2000. Use of akanda, biskatali and neem leaves as botanical insecticides against lesser grain borer. Bangladesh Journal of Entomology, 10(1/2): 1-13.

Apidianakis Y., Rahme L.G. 2011. Drosophila melanogaster as a model for human intestinal infection and pathology. Disease Models and Mechanisms, 4(1): 21-30.

Bahadorani S., Hilliker A.J. 2008. Cocoa Confers Life Span Extension in Drosophila melanogaster. Nutrition Research, 28: 377-382.

Bai Y., Chang J., Xu Y., Cheng D., Liu H., Zhao Y., Yu Z. 2016. Antioxidant and myocardial preservation activities of natural phytochemicals from mung bean (Vigna radiata L.) seeds. Journal of Agricultural and Food Chemistry, 64: 4648-4655.

Benil P.B., Lekshmi R., Viswanathan N., Jollykutty E., Rajakrishnan R., Thomas J., Alfarhan A.H. 2017. Combined efficacy of Vigna radiata (L.) R. Wilczek and Amorphophallus paeoniifolius (Dennst.) Nicolson on serum lipids in albino rats. Saudi Journal of Biological Sciences, 24(6): 1249-1254.

Bilgiçli N. 2002. Fitik asitin beslenme açısından önemi ve fitik asit miktarı düşürülmüş gıda üretim metotlerı. Selçuk Tarım ve Gıda Bilimleri Dergisi, 16 (30): 79-83.

Chandrasiri S.D., Liyanage R., Vidanarachchi J.K. 2016. Does processing have a considerable effect on the nutritional and functional properties of mung bean (Vigna radiata). Procedia Food Science, 6: 352-355.

Dueñas M., Martínez-Villaluenga C., Limón R.I., Peñas E., Frias J. 2015. Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Research International, 70: 55-63.

Dueñas M., Sarmento T., Aguilera Y., Benitez V., Mollá E., Esteban R.M., Martín-Cabrejas M.A. 2016. Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT- Food Science and Technology, 66: 72-78.

Duttlinger A., Berry K., Nichols R. 2002. The different effects of three Drosophila melanogaster dFMRFamide-containing peptides on crop contractions suggest these structurally related peptides do not play redundant functions in gut. Peptides, 23(11): 1953-1957.

Gan R.Y., Lui W.Y., Wu K., Chan C.L., Dai S.H., Sui Z.Q., Corke H. 2016. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An update dreview. Trends in Food Science and Technology, 59: 1-14.

Ganesan K., Xu B. 2017. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science Human Wellness, 7: 11-33.

Guajardo-Flores D., Serna-Guerrero D., Serna-Saldívar S.O., Jacobo-Velázquez D.A. 2014. Effect of germination and UV-C radiation on the accumulation of flavonoids and saponins in black bean seed coats. Cereal Chemistry, 91(3): 276-279.

Güneş E. 2016. Besinler ve Beslenme Çalışmalarında Drosophila. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19(3): 236-243.

Güneş E., Büyükgüzel E. 2017. Oxidative effects of boric acid on different developmental stages of Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Turkish Journal of Entomology, 41(1): 3-15.

Habig W.H., Pabst M.J., Jakoby W.B. 1974. Glutathione-s-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249: 7130-7139.

Jain S.K., Levine S.N. 1995. Elevated lipid peroxidation and Vitamin E quinine levels in heart ventricles of streptozoticin-treated diabetic rats. Free Radical Biology and Medicine, 18: 337-341.

Kapravelou G., Martínez R., Andrade A.M., López Chaves C., López-Jurado M., Aranda P., Arrebola F., Canizares F.J., Porres J.M. 2015. Improvement of the antioxidant and hypolipidaemic effects of cowpea flours (Vigna unguiculata) by fermentation: results of in vitro and in vivo experiments. Journal of Science Food and Agriculture, 95(6): 1207-1216.

Liyanage R., Kiramage C., Visvanathan R., Jayathilake C., Weththasinghe P., Bangamuwage R., Jayawardana B.C., Vidanarachchi J. 2017. Hypolipidemic and hypoglycemic potential of raw, boiled, and sprouted mung beans (Vigna radiata L. Wilczek) in rats. Journal of Food Biochemistry. 42(1): e12457.

López-Amorós M.L., Hernández T., Estrella I. 2006. Effect of germination on legume phenolic compounds and their antioxidant activity. Journal of Food Composition and Analysis, 19(4): 277-283.

Lushchak V., Rovenko B.M., Gospodaryov D.V., Lushchak V.I. 2011. Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 160(1): 27-34.

Nergiz C., Gökgöz E. 2007. Effects of traditional cooking methods on some antinutrients and in vitro protein digestibility of dry bean varieties (Phaseolus vulgaris L.) grown in Turkey. International Journal of Food Science and Technology, 42: 868-873.

Mohd Ali N., Mohd Yusof H., Long K., Yeap S.K., Ho W.Y., Beh B.K., Alitheen N.B. 2013. Antioxidant and hepatoprotective effect of aqueous extract of germinated and fermented mung bean on ethanol-mediated liver damage. BioMedical Research, 1-9.

Öztürk İ. 2008. Çimlendirilmiş Buğday Tanesinin Kimyasal Özelliklerinin Belirlenmesi ve Doğal Gıda Katkı Maddesi Olarak Değerlendirilme İmkanlarının Araştırılması, Erciyes Üniversitesi. Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Kayseri, Türkiye.

Pająk P., Socha R., Gałkowska D., Rożnowski J., Fortuna T. 2014. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143: 300-306.

Rahman A., Talukder F.A. 2006. Bioefficacy of some plant derivatives that protect grain against the pulse beetle, Callosobruchus maculatus. Journal of Insect Science, 6(1): 1-10.

Ren J., Zhu H., Chi C., Mehrmohamadi M., Deng K., Wu X., Xu T. 2014. Beadex affects gastric emptying in Drosophila. Cell Research, 24(5): 636-639.

Roy B., Sarker B.C., Amin M.R., Roy B.C., Jalal S. 2010. Bio-efficacy of shiyalmutra leaf extract against rice weevil. Journal of Science and Technology (Dinajpur), 8: 1-5.

Satya S., Kaushik G., Naik S.N. 2013. Processing of food legumes: A boon to human nutrition. Mediterranean Journal of Nutrition and Metabolism, 3: 183-195.

Shahjahan M., Amin M.R. 2000. Evaluation of some plant extracts against rice weevil, Sitophilus oryzae L. Journal of the Asiatic Society of Bangladesh Science, 26(2): 213-22.

Sharma V., Joseph C., Ghosh S., Agarwal A., Mishra M.K., Sen E. 2007. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Molecular Cancer Therapeutics, 6(9): 2544-2553.

Sivritepe H.Ö. 2010. Tohum Filizi Teknolojisi. Bursa Tarım Kongresi.

Subuola F., Widodo Y., Kehinde T. 2012. Processing and utilization of legumes in the tropics. In: A.H.A. Eissa (Ed.). Trends in vital food and control engineering Rijeka. pp: 71-85. (In Tech)

Watson W.A.F. 1982. The mutagenic activity of quercetin and kaempferol in Drosophila melanogaster. Mutation Research Letters, 103(2): 145-147.

Wu S.J., Wang J.S., Lin C.C., Chang C.H. 2001. Evaluation of hepatoprotective activity of legumes. Phytomedicine, 8(3): 213-219.

Tachibana N., Wanezaki S., Nagata M., Motoyama T. 2013. Intake of mung bean protein isolate reduces plasma triglyceride level in rats. Journal of Functional Foods in Health and Disease, 3: 365-376.

Tang D., Dong Y., Ren H. 2014. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal, 8 (1): 1-9.

Tiwari A.K., Sahana C., Zehra A., Madhusudana K., Kumar D.A., Agawane S.B. 2013. Mitigation of starch-induced postprandial glycemic spikes in rats by antioxidants-rich extract of Cicer arietinum Linn. seeds and sprouts. Journal of Pharmacy and Bioallied Sciences, 5(4): 270-276.

Yeap S.K., Beh B.K., Ali N.M., Mohd Yusof H., Ho W.Y., Koh S.P., Long K. 2014. In vivo antistress and antioxidant effects of fermented and germinated mung bean. BioMed Research International, 1-6.

Yeap S.K., Beh B.K., Ho W.Y., Mohd Yusof H., Mohamad N.E., Ali N.M., Long K. 2015. In vivo antioxidant and hypolipidemic effects of fermented mung bean on hypercholesterolemic mice. Journal of Evidence-Based Integrative Medicine, 1-6.

Refbacks

  • There are currently no refbacks.