Determination of the acute toxic effect of ZnO-TiO2 nanoparticles in brine shrimp (Artemia salina)

Yeşim DAĞLIOĞLU, İlhan ALTINOK, Hasan İlHAN, Münevver SOKMEN


This study aims to investigate aquatic stability and toxic effects of ZnO-TiO2 NPs (45.2 nm) on Artemia salina. According to probit analyzes LC50 values for 24, 48, 72 and 96 hours were calculated as 5.111, 0.296, 0.143 and 0.119 mg/L, respectively. According to the results of Ti amount in ZnO-TiO2 were compared in terms of concentrations by multiple comparison test, significantly differences were observed among 0.1-0.01 mg/L 0.1-0.5 g/l and 0.1-1 mg/L (P<0.01). According to the statistics in terms of the dependent variables, a highly significant difference of Ti nanoparticle amount was found in terms of concentration elimination and accumulation (P<0.01).


ZnOTiO2, Nanoparticles, Nanotoxicology, Artemia salina, Acute toxicity, Bioaccumulation.

Full Text:



Arslan Z., Ateş M., Mcduffy W., Agachan M.S., Farah I.O., Yu W.W., Bednar A.J. 2011. Probing metabolic stability of CdSe nanoparticles: Alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe nanoparticles. Journal of Hazardous Materials, 192: 192-199.

Arslan Z., Ertaş N., Tyson J.F., Uden P.C., Denoyer E.R. 2000. Determination of trace elements in marine plankton by inductively coupled plasma mass spectrometry (ICP-MS). Fresenius journal of Analytical Chemistry, 366: 273-282.

Ateş M., Daniels J., Arslan Z., Farah O.İ. 2012. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia Salina: Assessment of nanoparticle gggregation, accumulation, and toxicity. Environ. Monit. Assess. Doi: 10.1007/s10661-012-2794-7.

Auffan M., Flahaut E., Thill A., Mouchet F., Carrire M., Gauthier L., Achouak W., Rose J., Wiesner M., Bottero J. 2011. Ecotoxicity: Nanoparticle reactivity and living organisms. Nanoethics and Nanotoxicology, Springer Berlin Heidelberg, 325-357.

Bai W., Zhang Z., Tian W., He X., Ma Y., Zhao Y., Chai Z. 2010.Toxicity of zinc oxide nanoparticles to zebrafish embryo: A physicochemical study of toxicity mechanism. J. Nanopart Res. 12:1645-1654.

Fabrega J. Tantra R., Amert A., Stolpe B., Tomkins J., Fry T., Lead J., Tylert R.C. Galloway S.T. 2012. Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller Amphipod Corophium volutator. Environ. sci. technol 46- 2 pp 1128-1135.

Farre M., Gajda-Schrantz K., Kantiani L., Barcelo D. 2009. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anala Bioanal Chem, 393:81-95.

Handy R.D., Owen R., Valsami-Jones E. 2008. The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 17:315-325.

Hund-Rinke K., Simon M. 2006. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on Algae and Daphnids. Environ Sci & Pollut Res.

Krysanov E.Yu. Pavlov D.S. Demidova T.B. Dgebuadze Y. Y. 2010. Effects of nanoparticles on aquatic organisms. Biology Bullettin, 37, 4: 406-412.

McWilliams A. 2006. BBC Report highlights. nanotechnology: a realistic market assessment, http://www. Bcc accessed.

Nel A., Xia T., Madler L., Li N. 2005. Toxic potential of materials at the nano level. Science, 311: 622–627.

OECD 202. 2004.Guideline for testing of chemicals, ‘Daphnia Sp., Acute Immobilisation Test’.

Özkan Y., Altınok İ., İlhan H., Sökmen M. 2015a. Determination of TiO2 and AgTiO2 nanoparticles in Artemia salina: Toxicity, morphological changes, uptake and deputation. Bull. Environ. Contam. Toxicol. DOI:10.1007/s00128-015-1634-1.

Özkan Y., İrende İ., Akdeniz G., Kabakçı D., Sökmen M. 2015b. Evaluation of the comparative acute toxic effects of TiO2 and Ag-TiO2 and ZnO-TiO2 composite nanoparticles on Honey bee (Apis mellifera). J. Int. Evironmental Application & Science, vol. 10(1):26-36.

Pendashte H., Shariati F., Keshavarz A., Ramzanpour Z. 2013. Toxicity of zinc oxide nanoparticles to Chlorella vulgaris and Scenedesmus dimorphus algae species. World Journal of Fish and Marine Sciences, 5, 5:563-570.

Pipan-Tkalec Z., Drobne D., Jemec A., Romih T., Zidar P., Bele M. 2009. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicology, Tox-50391; No of pages 6.

Service R. F.2005. Nanotechnolo. calls rise for more research on toxicology of nanomaterials. Science, 310, 1609

Sorgelos P. 1980. Availability of References Artemia Cysts, Marine Ecology Progress Series, 3, 363-364.The Royal Society and the Royal Academy of Engineering: Nanoscience and nanotechnologies: Opportunities and Uncertainties.

Tret’yakov Yu.D. 2007.Problem of Development of Nanotechnologies in Russia and Abroad, Vestn. Ross. Akad. Nauk, vol. 77, no. 1, pp. 3–10.

Wiench K., Wohlleben W., Hisgen V., Radke K., Salinas E., Zok S., Landsiedel R. 2009. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere, 76: 1356-1365.

Xiong D., Fang T.Y., Sima X., Zhu W. 2011. Effects of nano-Scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute Toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409: 1444-1452.

Zhao Q., Pang X.F., Liu LW., Deng B. 2007. The Biological effect of iron oxide and its hydrate nanoparticles. Solid State Phenom, 121–123,2, 735–738.

Zhu X., Chang Y,. Chen Y. 2010. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, volume 78. ıssue 3, pages 209-215.

Zhu X., Wang J., Zhang X., Chang Y., Chen Y. 2009. The impact of ZnO anoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology, 20-19.


  • There are currently no refbacks.